
UO-LISP NEWSLETTER

October 1985 Vol. 2 No. 4

Version 3.2 Learn Lisp Announced

Version 3.2 of the UO-LISP Learn Lisp system is now
available from Northwest Computer Algorithms. This newest
version contains many long awaited features:

1. Generic Arithmetic. Bignumber arithmetic is now automatic
when the small integer magnitude is exceeded. Small number
arithmetic is accomplished with the usual functions, but
each is prefixed with an I: IADDl, IPLUS2, etc ..
Bignumber-only arithmetic is accomplished by the same
functions prefixed with a B: BADDl, BPLUS2, etc •• on the
other hand, the PLUS2 function both verifies numeric
operands are present and decides whether IPLUS2, BPLUS2, or
FPLUS2 (for floating point) is to be called.

2. Floating Point. 7 digits of accuracy, arbitrary exponents.
Floating point numbers are entered in the usual format.
output is in standard notation for reasonable sized numbers
and scientific notation when a fixed exponent range is
exceeded. The generic arithmetic package converts fixed
operands to floating point whenever at least on argument is
floating.

3. Space Sizes Dotted-pair space has been expanded to 16384
possible pairs. String space has expanded to accomodate
about 2000 strings with an aggregate length of 32k bytes.

4. New Functions. Several new functions have been added:
TRINTS: turn on saving the name of interpreted functions on
the alist for traceback. UNTRINTS Turn off the interpeted
function tracing. CLOSEALL Close all open files. MAPOBL
Apply a function to every identifier in the symbol table.

Blackiack

In place of the promised music generation program, we offer this
program submitted by Andrew Parker. The program is divided into
two parts, the first is a general program for shuffling a deck

2

of cards. The second plays the game. We present this pretty much
as we received it.

%***
%
%
%
%
%
%
%
%
%
%
%
%
%

This program shuffles a deck of cards. The shuffled
deck is returned as a list. The deck of cards is
maintained in the global variable "deck". The deck
is a standard S2 card deck with no JOKERs. The user
can modify "deck" by adding the additional elements
required. For example to add two JOKERs you would do
the following:

(SETQ deck (APPEND deck '(JOKER JOKER)))

Two decks can be shuffled together by APPENDING the
global variable "deck" to itself.

% create the deck of cards
(GLOBAL '{deck))

{SETQ deck '{12H 13H !4H 1SH 16H 17H !SH 19H !110H JH
QH KH AH 120 130 140 1SD 160 170 180 !90
11100 JD QD KO AD 12C 13C !4C !SC 16C 17C
18C !9C !l!OC JC QC KC AC !2S 13S 14S !SS
l6S 17S l8S !9S ll!OS JS QS KS AS))

%**
% removal-nth - removes the nth element of a list.
%
% ARGUMENTS:
%
%
%
% RETURNS:
%

1 - a list {the deck of cards)
element!-number - the position of the

nth element

the list 1 with the nth element removed

% SIDE EFFECTS: none

(DE remove!-nth (1 element!-number)
(COND ((NULL 1) NIL)

((EQ element!-number l) (CDR 1))
(T (CONS (CAR 1)

{remove!-nth {CDR 1)
(SUBl element!-number))))))

%**
% return!-nth: returns the nth element of the list 1 as
% an atom.
%
% ARGUMENTS:
%
%
%
% RETURNS:

1 - a list (the deck of cards)
element!-number: the position of the

nth element of the list

the nth element of the list 1 as an atom

%
% SIDE EFFECTS: none

(DE return!-nth (1 element!-number)
(COND ((NULL l) NIL)

((EQ element!-nwnber l) {CAR 1))
(T (return!-nth (CDR 1)

(SUBl element!-number)))))

%**
% shuffle
%
% ARGUMENTS: 1 - a list (the deck of cards)
%
% RETURNS: the list 1 randomly rearranged.
%
% SIDE EFFECTS: none

(DE shuffle (1)
(PROG (card!-position length!-1)

(COND ((NULL 1) (RETURN NIL))
((EQN l (SETQ length!-1 (LENGTH 1)))

(SETQ card!-position l))
(T (SETQ card!-position

(ADDl (QUOTIENT (RANDOM)
(QUOTIENT 8191

length!-1))))))
(RETURN (CONS (return!-nth 1 card!-position)

(shuffle
(remove!-nth 1 card!-position))))}}

%**
% get!-deck
%
% ARGUMENTS: none

' % RETURNS: a list that represents a shuffled deck
% of cards
%
% SIDE EFFECTS: reassigns the global variable "deck"
% to the order

(DE get!-deck ()
(SETQ deck (shuffle deck)))

STOP

The second program section plays the game. There are
machine dependent parameters at the beginning that
fiddled for non-IBM compatible machines {this worked
Tandy Model 2000 without change}.

3

a few
must be
on the

(COND ((NOT (GETD / CURSOR)) (FLOAD "TERMINAL")))

(GLOBAL I (

%

my!-deck
dimond
club
heart
spade
joker
upper!-left
upper!-right
lower!-left
lower!-right
top!-edge
side!-edge
cardl-back
yourl-currentl-bet
your!-hand
yourl-total
computerl-hand
double 1-hand))

% deck of cards to be delt
% diamonds
% clubs
% hearts
% spades
% joker
% upper left corner of card
% upper right corner of card
% lower left corner of card
% lower right corner of card
% top edge of card
% side edge of card
% back of card
% amount you are betting
% A-list representing your hand
% amount of money you have left
% A-list of the computers hand
% A-list of your double hand

% The following values must be set for the type of
% computer you are using. The default is for the IBM PC
% and the COMPAQ deskpro.

(SETQ dimond 4)
(SETQ club 5)
(SETQ heart 3)
(SETQ spade 6)
(SETQ joker 2)
(SETQ upperl-left 218)
(SETQ upperl-right 191)
(SETQ lower!-left 192)
(SETQ lowerl-right 217)
(SETQ top!-edge 196)
(SETQ side!-edge 179)
(SETQ card!-back 178)

%
% your!-hand and the computer!-hand are A-list
% representing the cards that have been dealt. The
% A-list looks as follows:
%
%
%
%
%
%

(((x!-position • yl-position) (card • suit))
((xi-position. y!-position) (card. suit)) •••..)

There is one entry for each card a player has been
dealt. At the beginning of each hand the lists are

4

% set to NIL and the totals to zero.
%

(SETQ deck'(
1 2 3 4 5 6 7 8
14 15 16 17 18 19 20 21
27 28 29 30 31 32 33 34
40 41 42 43 44 45 46 47

9 10 11 12 13
22 23 24 25 26
35 36 37 38 39
48 49 50 51 52))

% hearts
% diamonds
% clubs
% spades

%**
% get1-normal1-card -
%
% ARGUMENTS - card!-number:
%

numeric value representing
one playing card. If the
number is greater then 52
it is assumed to be a joker

%
%
%
% RETURNS -
%

a dotted pair in which the CAR is the
card value 2-10, J-A and the CDR is the
suit 3-hearts, 4-dimonds, 5-clubs, %

% and 6-spades.

(DE get!-normal!-card (card!-number)
(PROG (suit card)

(COND ((LESSP card!-number 14)
(SETQ suit heart)
(SETQ card card1-number))

((LESSP card!-number 27)
(SETQ suit dimond)
(SETQ card (DIFFERENCE card!-number 13)))

((LESSP card!-number 40)
(SETQ suit club)
(SETQ card (DIFFERENCE card!-number 26)))

((LESSP card1-number 53)
(SETQ suit spade)
(SETQ card (DIFFERENCE card1-number 39)))

(T (SETQ suit joker)
(SETQ card "J")))

(COND ((EQ card 11) (SETQ card "J"))
((EQ card 12) (SETQ card "Q"))
((EQ card 13) (SETQ card "K"))
((EQ card 1) (SETQ card "A")))

(RETURN (CONS card suit))))

%**
%
% OUTPUT SECTION
%
%**
% print!-card!-id - displays the card value 2-10, J-A
% and the graphic representation of the suit.

(DE print!-card!-id (card!-frame)
(TERPRI)

5

(CURSOR (PLUS (CAAR card!-frame) 4)
(DIFFERENCE (COAR card!-frame) 2))

(PRIN2 (CADR card!-frame))
(!$PA (COOR card!-frame)))

%**
% print!-cardl-back - if the card is delt face down,
% fill in the back

(DE printl-cardl-back (cardl-frame)
(PROG (x y)

(TERPRI)
(SETQ x (ADDl (CAAR cardl-frame)))
(SETQ y (COAR cardl-frame))
(FOR (FROM I 1 6)

(DO
(CURSOR x (DIFFERENCE y I))
(FOR

(FROM counter 1 8)
(DO (!$PA cardl-back)))))))

%**
% print!-card - displays one card on the screen. The
% x,y position is the upper left hand corner of the card.
%
% ARGUMENTS: cardl-frame - an A-list representing the
% card and its position
% ((xi-position • yl-position)
% (card!-value . suit))
(DE print!-card (card!-frame)

(PROG (X y card)
(SETQ x (CAAR card!-frame))
(SETQ y (COAR cardl-frame))
(SETQ card (CDR card!-frame))
(TERPRI)
(CURSOR x y)
(1$PA upperl-left)
(FOR (FROM I 1 8) (DO (!$PA top!-edge)))
(!$PA upperl-right)
(FOR (FROM I 1 6)

(DO
(CURSOR x (DIFFERENCE y I))
(!$PA sidel-edge)
(PRIN2 " ")
(!$PA sidel-edge)))

(CURSOR x (DIFFERENCE y 7))
(!$PA lower!-left)
(FOR (FROM I 1 8) (DO (!$PA top!-edge)))
(!$PA lower!-right)))

%**
% erase!-card - removes a card from the screen. It does
% not repaint any underlying cards.

(DE erase!-card (card!-frame)

6

(PROG (X y)
(SETQ x (CAAR card!-frame))
(SETQ y (COAR card!-frame))
(FOR (FROM i 0 7)

(DO
(TERPRI)
(CURSOR x (DIFFERENCE y i))
(PRIN2 II II)))))

%**
% redrawl-hand - re-paints a hand on the screen.

(DE redraw!-hand (hand)
(COND ((NOT (NULL hand))

(print!-card (CAR hand))
(print!-card!-id (CAR hand))
(redraw!-hand (CDR hand)))))

%**
% get!-card - get the first card off the deck
% The card returned is an A-list (card value • suit)

(DE get!-card ()
(PROG (card)

(COND ((NULL my!-deck)
(CURSOR 1 2)
(CLEAR1-EOP)
(PRIN2T "I'm shuffling a new deck, please wait")
(SETQ my!-deck (get!-deck))))

(SETQ card (get!-normall-card (CAR myl-deck)))
(SETQ my!-deck (CDR my!-deck))
(RETURN card)))

%**
% card!-position
% ARGUMENTS hand - A-list representing one hand
% RETURNS: a dotted pair contianing the x!-position and
% y!-position to display the next card

(DE card!-position (hand)
(COND ((LESSP (DIFFERENCE (CDAAR hand) 4) 14)

(CONS (PLUS2 (CAAAR hand) 8) 22))
(T (CONS (CAAAR hand)

(DIFFERENCE (CDAAR hand) 4)))))

%**
%
% BLACK JACK
%
%**
% deal - deals out the first two cards for black jack.

(DE deal ()
(PROG (card)

(CLEAR)

7

(TERPRI)
(CURSOR 5 24)
(PRIN2T "The House")
(CURSOR 58 24)
(PRIN2T "Your Hand")
(SETQ computer!-hand

(SETQ double!-hand
(SETQ your!-hand NIL)))

(FOR (FROM i 1 2)
(00

(SETQ your!-hand
(APPEND

(LIST
(CONS (CONS 58

(DIFFERENCE 26 (TIMES i 4)))
(getl-card)))

your! -hand))
(print!-card (CAR your!-hand))
(print1-card1-id (CAR yourl-hand))
(SETQ computer1-hand

(APPEND
(LIST

(CONS (CONS 5
(DIFFERENCE 26 (TIMES i 4)))

(getl-card)))
computer!-hand))

(print!-card (CAR computer!-hand))
(COND ((NEQ i 1)

(printl-card!-id (CAR computer!-hand)))
(T (print1-card1-back

(CAR computer!-hand))))))))

%**
% total!-cards
% ARGUMENTS: hand - A-list containing all the cards in
% a hand.
% RETURNS: a numeric value representing the total of
% the hand.

(DE total!-cards (hand)
(PROG (aces total card!-value)

(SETQ total (SETQ aces 0))
(WHILE (NOT (NULL hand))

(DO
(COND ((NUMBERP (CADAR hand))

(SETQ cardl-value (CADAR hand)))
((EQ (CADAR hand) "A")

{SETQ card!-value 11)
(SETQ aces (ADDl aces)))

(T (SETQ cardl-value 10)))
(SETQ total (PLUS total cardl-value))
(SETQ hand (CDR hand))))

(WHILE (AND (GREATERP total 21)
(GREATERP aces 0))

8

(DO
(SETQ total (DIFFERENCE total 10))
(SETQ aces (SUBl aces))))

(RETURN total)))

%**
% deal!-yourl-cards
% ARGUMENTS: your!-hand - A-list representing a players
% hand

(DE dealt-yourl-cards ()
(PROG (command ender)

(SETQ ender (SETQ command 'H))
(SETQ PROMPT!* "(H)it, (S)tay, (D)double, (Q)uit: ")
(WHILE (AND (NOT (MEMQ command '(!S !s)))

(DO

(LESSP (totall-cards your!-hand) 21)
(NOT (MEMQ command '(lQ lq))))

(TERPRI)
(CURSOR 1 2)
(CLEARl-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H lh))

(SETQ yourl-hand (dealt-card yourt-hand)))
((AND (MEMQ command '(lD td))

(EQ (LENGTH your!-hand) 2)
(EQ (CADAR yourt-hand)

(CADADR yourt-hand)))
(dot-double)

(CURSOR 1 2)
(CLEAR!-EOL)
(RETURN command)))

(SETQ command 'S)))))

%**
% dea1!-card
% ARGUMENTS hand - A-list representing one hand
% RETURNS an A-list with the additional card in it.

(DE deall-card (hand)
(PROG ()

(SETQ hand (APPEND (LIST (CONS (card!-position hand)
(gett-card)))

hand))
(printt-card (CAR hand))
(printt-cardt-id (CAR hand))
(RETURN hand)))

%**
% do!-double - control function for when you double.
% The computer hand will never double.
%
% ARUGMENTS - none we will always double your!-hand

(DE dot-double ()

9

(PROG (command)
(SETQ double!-hand (LIST (CAR yourl-hand)))
(SETQ your!-hand (CDR your!-hand))
(erase!-card (CAR double!-hand))
(printt-card (CAR yourt-hand))
(printt-card!-id (CAR your!-hand))
(SETQ double!-hand

(LIST (CONS (CONS
(DIFFERENCE (CAAAR double!-hand) 26)
(PLUS (CDAAR double!-hand) 4))

(COAR double!-hand))))
(CURSOR (CAAAR double!-hand) 24)
(PRIN2 "Double Hand")
(print!-card (CAR double!-hand))
(print!-card!-id (CAR doublet-hand))
(SETQ your!-hand (dealt-card your!-hand))
(SETQ double!-hand (dealt-card double!-hand))
(SETQ PROMPT!* "YOUR HAND - (H)it, (S)tay: ")
(WHILE (AND (NOT (MEMQ command '(!S !s)))

(LESSP (total!-cards your!-hand) 21))
(DO

(TERPRI)
(CURSOR l 2)
(CLEAR!-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H !h))

(SETQ your!-hand
deal!-card your!-hand))))))

(SETQ command 'H)
(SETQ PROMPT!* "DOUBLE HAND - (H) it, (S) tay: ")
(WHILE (AND (NOT (MEMQ command '(!S !s)))

(LESSP (total!-cards double!-hand) 21))
(DO

(TERPRI)
(CURSOR 1 2)
(CLEAR!-EOL)
(SETQ command (READ))
(COND ((MEMQ command '(!H !h))

(SETQ double!-hand
(deal!-card double!-hand))))))))

%**
% who!-won - determines who won the game. It displays
% the results on the screen and adjusts your!-total
% winnings.
%
% ARGUMENTS: hand -
%
%
%
%

hand!-type

A-list representing the hand
to compare against the
computer.

- discription for the display
'double or 'first

(DE who!-won (hand hand!-type)
(COND ((AND (LEQ (total!-cards hand) 21)

(LEQ (total!-cards computer!-hand) 21))

10

(COND ((LESSP
(total!-cards hand)
(ADDl
(totalt-cards computer!-hand)))

(PRIN2 "Computer wins ")
(PRIN2 handt-type)
(PRIN2 " hand")
(SETQ yourt-total

(DIFFERENCE
yourt-total
your!-current!-bet)))

(T (PRIN2 "You win ")
(PRIN2 hand!-type)
(PRIN2 " hand")
(SETQ your!-total

(PLUS
yourt-total
your!-current!-bet)))))

((LEQ (totalt-cards hand) 21)
(PRIN2 "You win ")
(PRIN2 hand!-type)
(PRIN2 ti hand")
(SETQ your!-total

(PLUS your!-total your!-current!-bet)))
((LEQ (total!-cards computer!-hand) 21)

(PRIN2 "Computer wins ")
(PRIN2 hand!-type)
(PRIN2 " hand")
(SETQ yourt-total

(DIFFERENCE yourt-total
your!-current!-bet)))

(T (PRIN2 "We're both over, no winner"))))

%**
% BLACKJACK - main controller loop for playing
% blackjack.

(DE BLACKJACK ()
(PROG (command)

(CLEAR)
(SETQ your!-total 2000)
(TERPRI)
(CURSOR 1 12)
(PRIN2 "Type any character to start •••• ")
(WHILE (EQ (DIRECTIO 255) 0)

(DO (SETQ SEED!* (QUOTIENT (RANDOM) 819))))
(WHILE (AND (NOT (MEMQ command '(!Q !q)))

(GREATERP your!-total 0))
(DO

(SETQ your!-current!-bet O)
(WHILE (OR (EQ your!-current!-b~t O)

(NOT (NUMBERP your!-current!-bet)))
(DO

(SETQ PROMPT!* II ")

(TERPRI)

11

(CURSOR 1 2)
(CLEAR!-EOP)
(PRIN2

"Please enter your bet, you can wager up to $ 11)

(PRIN2 your!-total)
(PRIN2 II : II)
(SETQ your!-current!-bet (READ})))

(deal)
{COND ((NOT (MEMQ

(SETQ command (deal!-your!-cards))
I (1 Q 1 q)))

(redraw!-hand (REVERSE computer!-hand))
(COND ((OR (LEQ (total!-cards your!-hand) 21)

(AND double!-hand
(LEQ
(total!-cards double!-hand)
21)))

(WHILE {LEQ

(DO

(total!-cards computer!-hand)
16)

(SETQ computerl-hand

(CURSOR 1 4)
(CLEAR1-EOP)

(deal!-card computer!-hand))))))

(who!-won your!-hand 'first)
(CURSOR. 1 3)
(CLEAR!-EOP)
(COND (double!-hand

(who!-won double!-hand 'double)))))))
(CLEAR)
(TERPRI)
(CURSOR 1 12)
(PRIN2 "Your total is $ 11)

(PRIN2 yourl-total)
(CURSOR 1 2)
(SETQ PROMPT!* 11 * 11)))

12

The program is executed by simply calling the function
BLACKJACK.

